Complete subgraphs and Turán's theorem

We've seen the maximum size of a graph containing no path of a certain length. What is the maximum size of a graph containing no $ K_r$?

Definition 6..7 ($ r$-partite graph)  

An $ r$-partite graph is a graph with a vertex partition $ V_1,\ldots,V_r$ so that each $ V_i$ is an independent set (i.e. $ G[V_i]$ is empty of edges).

Certainly no $ (r-1)$-partite graph contains $ K_r$.

What is the maximum size of a $ (r-1)$-partite graph? Clearly we should look at a complete $ (r-1)$-partite graph, where any pair of vertices in different classes are joined.

Suppose two class orders differ by more than 1, $ \vert V_i\vert \ge \vert V_j\vert + 2$. Moving a vertex from $ V_i$ to $ V_j$ increases the number of edges by $ \vert V_i\vert - \vert V_j\vert - 1 \ge 1$. Therefore the classes are as equal as possible.

Definition 6..8 (Turán graph, $ T_r$ and $ t_r$)  

The Turán graph $ T_r(n)$ is the complete $ r$-partite graph of order $ n$ with classes orders $ \lfloor \frac{n}{r} \rfloor $ or $ \lceil \frac{n}{r} \rceil $.

We write $ t_r(n) = e(T_r(n))$.

Theorem 6..9 (Turán's theorem; maximum sized graph not containing $ K_r$)  

Let $ G$ be a $ K_r$ free graph of order $ n$ with $ e(G) \ge
t_{r-1}(n)$ then $ G$ = $ T_{r-1}(n)$.

Proof. The vertices in $ T_r(n)$ with least degree belong to vertex class of greatest order, by removing one of these we get $ T_r(n-1)$.

$\displaystyle t_{r-1}(n) - \delta(T_{r-1}(n)) = t_{r-1}(n-1)$ (6.1)

Furthermore the degrees are as equal as possible.

$\displaystyle \Delta(T_{r-1}(n)) - \delta(T_{r-1}(n)) \le 1$ (6.2)

By induction on $ n$. True for $ n \le r - 1$, because $ T_{r-1}(n)$ is $ K_n$ for $ n \le r - 1$.

In general let $ G' \subset G$ be a spanning subgraph with $ t_{r-1}$ edges. Certainly $ G'$ is also $ K_r$ free. Now apply the handshaking lemma to $ G'$

$\displaystyle n\delta(G') \le 2e(G') $

$\displaystyle = 2 t_{r-1} $

$\displaystyle \le \delta(T_{r-1}(n)) + (n-1)\Delta(T_{r-1}(n)) $

Using 6.2

$\displaystyle \le n\delta(T_{r-1}(n)) + n - 1 $

$\displaystyle \delta(G') \le \delta(T_{r-1}(n)) $

Pick $ v \in V(G')$ a vertex of minimum degree. Then $ G' - v$ is again $ K_r$-free.

$\displaystyle e(G'-v) = e(G') - \delta(G') $

$\displaystyle = t_{r-1}(n-1) $

by 6.1.

So by the induction hypothesis, $ G' - v$ is a complete $ (r-1)$-partite graph. In $ G'$, $ v$ cannot be joined to all vertex classes in $ G' - v$, since otherwise $ G'$ would contain $ K_r$. So $ G'$ is $ (r-1)$-partite. But $ e(G') = t_{r-1}(n)$ and $ T_{r-1}(n)$ is the only $ (r-1)$-partite graph of that size, so $ G' = T_{r-1}(n)$.

Adding any new edge to $ T_{r-1}(n)$ creates a $ K_r$, so $ G = G' =
T_{r-1}(n)$.

$ \qedsymbol$

Theorem 6..10 (Turán's theorem; alternative forumulation and proof)  

Let $ G$ be a $ K_r$-free graph with vertex set $ V$. Then there exists a $ (r-1)$-partite graph $ H$ with vertex set $ V$, and $ d_H(v) \ge
d_G(v)$ for all $ v \in V$.

Proof. By induction on $ r$.

Case $ r = 2$ trivial.

In general, we pick $ x$ a vertex of $ G$ of maximum degree.

Let $ G' = G[\Gamma(x)]$. Then $ G'$ is $ K_{r-1}$ free. Let $ V' = \Gamma(x)$.

By induction, there is a $ (r-2)$-partite graph $ H'$ with vertex set $ V'$ and $ d_{H'}(v) \ge d_{G'}(v)$ $ \forall v \in V'$. Form $ H$ by joining every vertex in $ V \setminus V'$ to $ H'$.

Now construct $ H$ by joining every vertex in $ V \setminus V'$ to $ H'$. Then $ H$ is $ (r-1)$-partite. Need to show $ d_H(v) \ge
d_G(v)$ for all $ v \in V$.

If $ v \in V \setminus V'$, $ d_H(v) = \left\Vert V'\right\Vert = d_G(x)$. But $ d_G(x) \ge d_G(v)$ $ \forall v \in V$.

Otherwise, $ v \in V'$. $ d_H(v) = \left\Vert V \setminus V'\right\Vert + d_{H'}(v)$. But $ d_{H'}(v) \ge d_{G'}(v)$. Now $ d_{G}(v) \le d_{G'}(v) + \left\Vert V
\setminus V'\right\Vert$, so $ d_H(v) \ge
d_G(v)$. Done.

$ \qedsymbol$

Lemma 6..11 (Alternative formulation of Turán's theorem implies original)  

Let $ G$ be a $ K_r$ free graph of order $ n$ with $ e(G) \ge
t_{r-1}(n)$ then $ G$ = $ T_{r-1}(n)$.

Proof. Only remains to show $ e(G) \le t_{r-1}(n)$, as certainly $ T_{r-1}(n)$ is the unique $ (r-1)$-partite graph of size $ t_{r-1}(n)$. By previous theorem there exists a $ (r-1)$-partite graph $ H$ with vertex set $ V(G)$, and $ d_H(v) \ge
d_G(v)$ for all $ v \in V(G)$.

$ e(G) = \frac{1}{2} \sum_{v\in V}(d_G(v) \le \frac{1}{2} \sum_{v \in
V} d_H(v) = e(H)$. Now certainly $ H$ is $ (r-1)$-partite, and $ t_{r-1}(n)$ is the maximum number of edges of an $ (r-1)$-partite graph. So $ e(G) = e(H) \le t_{r-1}(n)$.

$ \qedsymbol$

Lemma 6..12 (Variant on the alternative formulation of Turán's theorem)  

Let $ G$ be a graph of order $ n$, and let $ x \in V(G)$ of degree $ d =
\Delta(G)$. If $ e(G[\Gamma(x)]) \le t_{r-2}(d)$, then $ e(G) \le t_{r-1}(n)$.

Proof. Let $ V' = \Gamma(x)$. Let $ H'$ be a copy of $ T_{r-2}(d)$ with vertex set $ V'$. Form an $ (r-1)$-partite graph $ H$ by joining every vertex in $ V \setminus V'$ to $ H'$. Certainly $ e(H) \le t_{r-1}(n)$.

Now $ e(H) - e(H') \ge e(G) - e(G[V'])$, so if $ e(G[V']) \le e(H')$ then $ e(G) \le e(H) \le t_{r-1}(n)$.

$ \qedsymbol$

Corollary 6..13 (Variant on alternative formulation of Turán's theorem)  

If $ G$ has order $ n$ and size $ e(G) > t_{r-1}(n)$, then $ G$ contains $ K_r$ as a subgraph.

Proof. By induction on $ r$. Case $ r = 2$ is trivial.

In general we take a vertex $ x \in V(G)$ with degree $ d =
\Delta(G)$. By the last lemma $ e(G[\Gamma(x)]) > t_{r-2}(d)$ as $ e(G) > t_{r-1}(n)$. By induction, $ G[\Gamma(x)]$ contains $ K_{r-1}$, so $ G$ contains $ K_r$.

$ \qedsymbol$

Observation 6..14 (Method for finding $ K_r$ in a graph)  

This corollary gives us an algorithm for finding $ K_r$ in a graph that has more edges than $ t_{r-1}(\left\Vert G\right\Vert)$. Take vertex $ x_r$ of degree $ \Delta(G)$. Let $ G_r = G[\Gamma(x_r)]$. Given $ x_n, G_n$ with $ n > 1$, take $ G_{n-1}$ to be $ G_n[\Gamma_{G_n}(x_n)]$ and $ x_{n-1}$ to be a vertex of highest degree in $ G_n$.

By the lemma, $ G_n$, $ n > 1$ contains $ K_{n-1}$. Therefore $ G[x_1,\cdots,x_r] \cong K_r$.

John Fremlin 2010-02-17