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Chapter 1

Introduction

The notes were typed up by me, John Fremlinjohn@fremlin.de.
These notes are based on the part IIA mathematics course “Graph theory” given

by Dr Fisher in Cambridge in Michælmas 2003. These notes are not connected to Dr
Fisher in any way. If there are any mistakes in them, it is morethan very likely that
they are my fault.

I added a few clumsy elucidations, to the arguments that I initially did not under-
stand, which will no doubt ensure that there are at least someerrors, because I could
not find any in Dr Fisher’s lectures.

Furthermore these notes are very definitely no substitute for actually going to lec-
tures, because they do not include all of the material and especially examples covered,
or any of the asides.

Finally, I would like to thank Dr Fisher for his supervisions, where he taught me a
lot about mathematics.
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Chapter 2

Graphs

Definition 2.1 (Graph). A graph is a pair(V,E) with E ⊆ V (2).
Loops and multiple edges are forbidden.

Definition 2.2 (Vertices). V = V (G) is the set of vertices ofG.

Definition 2.3 (Edges). E = E(G) is the set of edges ofG.

Example 2.4 (Complete graph). Kn is the complete graph onn vertices (all
(

n
2

)

edges).

Example 2.5(Cycle). Cn,n ≥ 3 is a cycle of lengthn; it has verticesv1, v2, · · · , vn

and edgesv1v2, v2v3, · · · .

Definition 2.6 (Isomorphic graphs). Two graphsG1, G2 are isomorphic (symbol∼=) if
there is a bijectionφ : V (G1) → V (G2) : xy ∈ E(G1) ⇔ φ(x)φ(y) ∈ E(G2).

Definition 2.7 (Complement). The complement ofG = (V,E) is Ḡ = (V, V (2) \ E).

Example 2.8(C5 isomorphic toC̄5).

Definition 2.9 (Subgraph). A subgraph of a graphG is a graphH withV (H) ⊆ V (G)
andE(H) ⊆ E(G).

Definition 2.10(Induced subgraph). H is an induced subgraph ifE(H) = E(G)
⋂

V (2)(H).
The induced subgraph with vertex setW ⊆ V (G) is writtenG[W ].

Definition 2.11 (Spanning subgraph). H is a spanning subgraph ifV (H) = V (G).

Definition 2.12 (Walk). A walk in a graph is a sequence of verticesv1, v2, · · · , vk ∈
E(G)∀1 ≤ i < k. Its length isk − 1. It is closed ifv1 = vk.

Definition 2.13 (Trail). A trail is a walk with no repeated edges.

Definition 2.14 (Euler trail/circuit). An Euler trail/circuit is a trail or circuit which
passes through all the edges.

Definition 2.15 (Eulerian). A graph is Eulerian if it has an Euler circuit.

Definition 2.16 (Path). A path is a walk (a trail) with no repeated vertices.
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4 CHAPTER 2. GRAPHS

Definition 2.17 (Cycle). A cycle is a closed walk of length≥ 3 with distinct vertices
except that the frist and last are equal (isomorphic toCn).

Definition 2.18 (Hamilton trail/circuit). A Hamilton path/cycle is a path/cycle which
goes through every vertex of the graph.

Definition 2.19 (Hamiltonian). A graph is Hamiltonian if it has a Hamilton cycle.

Definition 2.20 (Neighbours of a vertex). Let x be a vertex ofG, its neighbours or
adjacent vertices areΓ(x) = {y ∈ V (G) : xy ∈ E(G)}.

Definition 2.21 (Degree of a vertex). The degree of a vertexx is d(x) = ‖Γ(x)‖.

Definition 2.22 (Degree sequence of a graph). The degree sequence of a graph is a
graph with verticesv1, · · · , vn is d(v1), · · · , d(vn).

Definition 2.23 (Maximum, minimum degree). The minimum/maximum degree of a
vertex ofG is denotedδ(G) or ∆(G) respectively.

Definition 2.24 (Regular). A graphG is regular if δ(G) = ∆(G).

Definition 2.25 (Size of a graph). e(G) = ‖E(G)‖ is the number of edges ofG, its
size.

Definition 2.26 (Order of a graph). ‖G‖ = ‖V (G)‖ is the number of edges ofG, its
order.

Lemma 2.27(Handshaking lemma).
∑

v∈V (G) d(v) = 2e(G)

Proof. Double count{(x, xy) : x ∈ V (G), xy ∈ E(g)}.

Observation 2.28. To solve problems try induction (on vertices, edges, and other
things), try double counting (counting something in more than one way), consider the
pigeon hole principle and consider extreme cases.

Definition 2.29 (Connected). A graph is connected if every pair of vertices is joined
by a path.

The relationship onV (G) wherex ∼ y where is a path betweenx and y is an
equivalence relation. The equivalence classes are called components ofG.

Definition 2.30 (Acyclic). A graph is acyclic if it has no cycles.

Definition 2.31 (Tree). A tree is a connected acyclic graph.

Definition 2.32 (Forest). A forest is an acycle graph.

Theorem 2.33(Properties of a tree). The following are equivalent

1. G is a tree (connected, acyclic)

2. G is minimal connected

3. G is maximal acyclic
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Proof. i =⇒ ii. Let G be connected and acyclic. Letuv ∈ E(G). If G − uv were
connected then anyu − v path inG − uv would give a cycle inG.

ii =⇒ i. If C were a cycle inG anduv ∈ E(G) then anyx− y path inG passing
via uv could be patched up toC − uv to give a path inG − uv. Contradiction.

i =⇒ iii. Let uv /∈ E(G). SinceG connected∃u− v path inG so there is a cycle
in G + uv. Contradiction.

iii =⇒ i. SupposeG is not connected. Letu, v be vertices ofG belonging to
different components.G + uv contains no cycles. Contradiction.

Corollary 2.34. A graph is connected iff it has a spanning tree (i.e.G has a subgroup
T , T a tree andV (T ) = V (G)).

Proof. AssumeG has a spanning treeT . Then there is a path inT and so inG between
all vertices.

Let T be minimal connected spanning subgraph ofG. By previous theorem it is a
tree.

Definition 2.35 (Leaf). A leaf is a vertexv with d(v) = 1.

Lemma 2.36(Trees have leaves). Every treeT of ordern ≥ 2 has at least two leaves.

Proof. Let P = x1 · · ·xk be a path of maximal length inT . ThenΓ(x1) ⊂ P , sinceP
is maximal.T is acyclic soΓ(x1) ∩ P = {x2}. Similarly for xk.

Theorem 2.37(Size of a tree). A tree of ordern has sizen − 1. e(T ) = ‖T‖ − 1. (In
fact a connected graphG with e(T ) = ‖T‖ − 1 is a tree, exercise.)

Proof. By induction onn. Clearly true forn ≤ 2. Let T be a tree of ordern and let
v ∈ V (T ) be a leaf. Letx, y be vertices ofT − v. There is anx − y path inT . So
T connected impliesT − v connected soT − v is a tree. By inductione(T − v) =
n − 2 =⇒ e(T ) = e(T − v) + 1 = n − 1.

Observation 2.38(Number of possible graphs). If vertices are labelled1, · · · , n there

are
(

n
2

)

possible edges and each subset gives a graph so there are2(
n

2) possible graphs.
If the vertices are unlabelled then each graph can be labelled in at mostn! possible

ways. So there are at least2(
n

2)
n! graphs.

Theorem 2.39(Cayley). There arenn−2 labelled trees of ordern.

Proof. (Due to Pr̈ufer.) Given a labelled tree we constract a sequence ofn−2 numbers
in the range1, · · · , n as follows.

Select the lowest labelled leaf. Write down its neighbour. Delete the leaf. Repeat
until just two vertices remain. Now have a functionf from set of labelled trees of order
n to {1, · · ·n}n−2.

Claim: f is injective. Each vertexv appearsd(v)−1 times in the sequence. Leaves
are vertices not appearing. Given a sequence(a1, · · · , an−2) let v1 be the least vertex
not appearing, join it toa1. Let v2 be the least vertex not appearing in the new se-
quence(v1, a2, · · · , an−2), join it to a2. Repeat until there are only two nodes not in
(v1, · · · , vn−2), join them together. The original graph is reconstructed.
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Claim: f is surjective. Every sequence produces a connected acyclicgraphG with
e(G) = ‖G‖ − 1 which must be a tree (or else add more edges to make a tree and
produce a contradiction).

Deduce thatf is a bijection.

Definition 2.40 (Bipartite). A graph is bipartite with vertex classesX,Y if X andY
partition V (G) and no edge ofG lies withinX or Y (every edge goes between them).
We say thatX and Y are independent sets. We sometimes think of colouringX red
andY blue.

Theorem 2.41(König). A graph is bipartite iff it contains no odd cycles.

Proof. Any cycle alternates between the two vertex classes, so has even length.
We may suppose that the graphG is connected, since a graph is bipartite if its

components are bipartite.
Let the distanced(u, v) betweenu, v ∈ V (G) be the length of the shortestu − v

path. Letu ∈ V (G). DefineUi = {v ∈ V (G) : d(u, v) = i} for i = 0, 1, 2, · · · .
Note that an edge ofG can join vertices inUi andUj only if j = i or j = i + 1 or

j = i − 1.
Claim. There is no edge between vertices inUi. Proof. Ifyy′ ∈ E(G) : y, y′ ∈ Ui

then select pathsu − y andu − y′ of lengthi. Let w be the last common vertex. Then
w − y,w − y′ andyy′ form a cycle of length2(i− d(u,w)) + 1 contradicting absence
of odd cycles.

ColourU0

⋃

U2

⋃

U4

⋃

· · · red andU1

⋃

U3

⋃

U5

⋃

· · · blue to give a bipartition
of G.

Definition 2.42 (Complete bipartite graphKm,n). Km,n is the complete bipartite
graph with vertex classes of orderm andn with all mn edges.

Definition 2.43(Planar graphs). A graph that can be drawn in the plane without cross-
ings is planar. A graph drawn in the plane is a plane graph.

Definition 2.44 (Face or country). If we omit (“cut out”) the vertices and edges of a
plane graph from the plane the remainder falls into connected components called faces
or countries.

Theorem 2.45(Euler). LetG be a connected plane graph withn vertices,e edges and
f faces. Thenn − e + f = 2.

Proof. By induction one = e(G). If e = n − 1 thenG is a tree andf = 1. Done.
If e > n − 1 there is a cycleC in G. Then anyxy ∈ E(C) separates two different

faces. Apply induction toG − xy givesn − (e − 1) + (f − 1) = 2.

Observation 2.46. It is convenient to use stereographic projection to consider a plane
graph as drawn on the sphere. ThenG is connected iff all the faces are simply con-
nected (homeomorphic to the unit disc).

Definition 2.47 (Bridge). A bridge in a plane graph is an edge whose removal in-
creases the number of components.
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Definition 2.48 (Bridgeless). In a bridgeless plane graph every edge separates two
different faces.

2e(G) =
∑

i ifi wherefi is the number ofi-sided faces.

Definition 2.49 (Girth). The girth of a graphG is the length of the shortest cycle.

Theorem 2.50(Bound for number of edges in a planar graph). Let G be a bridgeless
plane graph withn vertices and girthg. Thene(G) ≤ g

g−2 (n − 2). In particular a
plane graph has at most3n − 6 edges.

Proof. Add edges if necessary to ensure thatG is connected. It remains bridgeless and
planar. Then2e =

∑

i ifi ≥ g
∑

i fi = gf . Sof ≤ 2e
g .

By Euler’s theoremn − 2 = e − f . But e − f ≥ e − 2e
g = g−2

g e =⇒ e ≤
g

g−2 (n − 2).

Theorem 2.51(Kuratowski (unproved)). Kuratowski showed that the only non-planar
graphs are those that contain a subdivision ofK5 or K3,3 obtained by replacing edges
with paths.

Theorem 2.52(Eulerian condition). A graph is Eulerian iff it is connected and every
vertex has even degree.

Proof. If the graph is Eulerian it must be connected. If a vertex has odd degree the path
must pass in a different number of times from that which it passes out.

By induction on the number of edges. True for the empty graph.Sinceδ(G) ≥ 2
there are no leaves soG is not a tree. ThereforeG must contain a cycleC. Each
component ofG \ E(C) has vertices of even degree, so by induction hypothesis each
has an Euler circuit. By traversingC take time out to traverse each of these circuits
when first encountered. We produce an Euler circuit forG asG is connected.

Corollary 2.53. A connected graphG has an Euler trail from a vertexx to a vertex
y 6= x iff x andy are the only vertices of odd degree.

Proof. If there is an Euler trail then obvious.
If x andy are the only vertices of odd degree then formG′ by adding a new vertex

u and joining it tox andy. By the theoremG′ has an Euler circuit. Deletingu gives
an Euler trail fromx to y.
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Chapter 3

Flows, connectivity and
matching

Definition 3.1 (Flow). A flow in a digraphD with sources and sinkt is a function
f : E(D) 7→ R≥0 such thatf+(x) = f−(x) ∀x ∈ V (D) \ {s, t} wheref+(x) =
∑

y:xy∈E(D) f(xy) (the flow out ofx) andf−(x) =
∑

y:yx∈E(D) f(yx) (the flow into
x). Convenient to setf(xy) = 0 if xy /∈ E(G).

Definition 3.2 (Directed edge). xy is the directed edge fromx to y. Loops and multiple
edges are forbidden, so certainlyf(xy) = 0 or f(yx) = 0.

Observation 3.3. We imaginef as representing a flow of water or electricity in a
network, being pumped in ats, and being pumped out att. The conditionf+(x) =
f−(x) expresses that flow is conserved at each vertex.

Definition 3.4 (Value of the flow). v(f) = f+(s) − f−(s) = f−(t) − f+(t) is called
the value of the flow wheres is the source andt is the sink.

Definition 3.5 (Net flow). Let S ⊆ V (D) with s ∈ S andt /∈ S. Let S̄ = V (D) \ S.
The net flow fromS to S̄ is f(S, S̄) =

∑

x∈S,y∈S̄(f(xy) − f(yx)).
Since

∑

x,y∈S(f(xy)−f(yx)) = 0 we getf(S, S̄) =
∑

x∈S,y∈V (f(xy)−f(yx)) =
∑

x∈S(f+(x) − f−(x)) = f+(s) − f−(s) = v(f).

Definition 3.6 (Capacity function). Given a capacity functionc : E(D) 7→ R≥0 we
require that0 ≤ f(xy) ≤ c(xy) for all xy ∈ E(D).

Definition 3.7 (Cut). Let S ⊆ V (D) with s ∈ S andt /∈ S. Let S̄ = V (D) \ S. The
set of edgesE(S, S̄) = {xy ∈ E(D) : x ∈ S, y ∈ S̄} is called a cut with capacity
c(S, S̄) =

∑

x∈S,y∈S̄ c(xy).
For any cut we havev(f) = f(S, S̄) ≤ c(S, S̄).

Theorem 3.8(Max-flow min-cut (MFMC)). The maximum value of a flow (sources
and sinkt) in a network is equal to the minimum cut capacity.

Proof. The maximum flow in a network is less than or equal to the minimum cut ca-
pacity. Letf be a flow. We constructS ⊆ V (D). Initially let S = {s}. Then put
y ∈ S if either∃x ∈ S : f(xy) < c(xy) or ∃x ∈ S with f(yx) > 0. Repeat.

If t ∈ S then there is a sequence of vertices starting withs = y0, y1, · · · , yk = t
where for each1 ≤ i ≤ k eitherc(yi−1, yi) − f(yi−1, yi) = δi > 0 or f(yi, yi−1) =

9
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δi > 0. Let δ = min1≤i≤kδi. We construct a new flowf : E(D) 7→ R≥0 equal to
f except on thes − t path but withf ′(yi−1, yi) = f(yi−1, yi) + δ or f ′(yi, yi−1) =
f(yi, yi−1) − δ as appropriate.f ′ is a flow. v(f ′) = v(f) + δ sof was not maximal,
contradiction.

Algorithm increases. Take a subsequence monotonic on each edge. Take the limit.
This flow has value of limit so it is maximal.

If t /∈ S. Let S̄ = V (D) \ S. E(S, S̄) is a cut. For everyxy with x ∈ S and
y ∈ S̄ we havef(xy) = c(xy). For every edgeyx, x ∈ S y ∈ S̄ we havef(yx) = 0.
v(f) = f(S, S̄) =

∑

x∈S,y∈S̄(f(xy) − f(yx)) =
∑

x∈S,y∈S̄ c(xy). That is, the value
of the flow is the cut capacity of some cut.

Corollary 3.9 (Integrability theorem). In a network with integer valued edge capacities
there is a maximal flow whose value is equal to the minimum cut capacity, which has
integer values at each edge.

Proof. Follow MFMC starting with the zero flow. Thenδ is always integer.

Observation 3.10. Note that there may be a maximal flow which is not integer valued
on each edge.

Definition 3.11 (Multiple sinks and sources). Consider multiple sourcess1, · · · , sk

and multiple sinkst1, · · · , tk. The value of the flow isv(f) =
∑k

i=1(f+(si) −

f−(si)) =
∑l

j=1(f−(tj) − f+(tj)) and a cut isE(S, S̄) wheres1, · · · , sk ∈ S and
t1, · · · , tk ∈ S̄.

Corollary 3.12 (MFMC for multiple sources and sinks). In a multiple source network
the maximum value of a flow is equal to the minimum cut capacity.

Proof. We construct a new network by joining a supersources to s1, · · · , sk and a
supersinkt to t1, · · · , tl using edges of infinite capacity.

Apply MFMC. Note that any cut of finite capacity cannot touch edgesssi or tjt so
cut can be applied to original graph.

Definition 3.13 (Vertex capacities). We can consider vertex capacities instead of edge
capacities. The capacity function is nowC : V (D) \ {s, t} 7→ R≥0 and we want
0 ≤ f+(v) = f−(v) ≤ c(v) ∀v ∈ V (D) \ {s, t}. A cut is now a set of verticesS such
thatD − S has nos − t path. It has capacity

∑

v∈S c(v).

Corollary 3.14 (Vertex capacity version of MFMC). The maximum value of a flow in
a network with vertex capacities is equal to the minimum cut capacity.

Proof. Construct fromD a new networkD′ with edge capacities. Replace each vertex
v by two verticesv− andv+ and an edgev−v+. For each edgexy ∈ E(D) add an
edgex+y− to D′. We givev−v+ capacityc(v) give x+y− infinite capacity. Apply
MFMC.



Chapter 4

Connectivity and the theorems
of Menger

Definition 4.1 (Notation for subgraphs). If G graph andS ⊆ V (G) thenG − S is
the induced subgraph with edges inS deleted. GivenF ⊆ E(G) thenG − F is the
spanning subgraph obtained by deleting edges inF .

Definition 4.2 (k connected). A graph isk connected if|G| > k andG−S is connected
for anyS ⊂ V (G) with |S| < k.

Observation 4.3. The onlyk connected graph withk+1 vertices is the complete graph
Kk+1.

Definition 4.4 (Connectivity). The connectivity ofG or κ(G) = max{k : Gisk−connected}.

Definition 4.5 (Local connectivity). If a, b ∈ V (G) distinct andab /∈ E(G) the local
connectivityκ(a, b;G) = min{k : ∃S ⊆ V (G) \ {a, b} : |S| = k : G−S has noa− b
path}, the minimum number vertices separatinga andb.

Observation 4.6. If G is not complete thenκ(G) = mina,b{κ(a, b;G)}, which is the
same asmina,b:ab,ba/∈E(G){κ(a, b;G)}.

If G is complete thenmina,b{κ(a, b;G)} does not have a value, butκ(Kn) = n−1.

Definition 4.7 (k-edge connected). A graphG is k-edge connected ifG − F is con-
nected for allF ⊆ E(G) with |F | < k.

Definition 4.8 (Edge connectivityλ(G)). The edge connectivity ofG is λ(G) =
max{k : G is k edge connected}.

Definition 4.9. If a, b ∈ V (G) distinct then the local edge connectivity isλ(a, b;G) =
min{k : ∃F ⊆ E(G) : |F | = k,G − F has noa − b path }. Note thatλ(G) =
mina,b λ(a, b;G).

Definition 4.10 (Independent paths). Two a − b paths are independent if their only
common vertices area, b.

Theorem 4.11(Menger). Vertex form. Leta, b ∈ V (G) distinct. ab /∈ E(G) then
κ(a, b;G) = maximum number of pairwise independenta − b paths.

Edge form.a, b ∈ V (G) distinct. Thenλ(a, b;G) = maximum number of edge
disjointa − b paths.

11
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Proof. Vertex form. Replace all edgesuv ∈ E(G) with two directed edges and give
each vertex capacity 1. Apply vertex form of max-flow min-cutto get an integer flow
from a − b, κ(a, b;G) since each vertex has capacity1 or 0.

Edge form. Do the same thing but use the edge form of max-flow min-cut.

Definition 4.12 (Line graph). The line graphL(G) is the graph with a vertexve for
eache ∈ E(G) and an edgevevf whenevere andf have a common end vertex inG.

Observation 4.13. The edge form can be deduced from the vertex from, using the line
graph.

Observation 4.14. Given a setP of independenta − b paths then certainly|P | ≤
κ(a, b;G), but it is not necessarily possible to add paths toP to formκ(a, b;G) inde-
pendent paths.

Observation 4.15. There is a multiple source - sink version of Menger’s theorem.

Lemma 4.16. Assumeab ∈ E(G) and letG′ = G−ab. Thenκ(a, b;G′) ≥ κ(G)−1.

Proof. Let k = κ(a, b;G′). ChooseS ⊆ V (G) \ {a, b} with |S| = k andG′ − S
disconnected. Letx and y be vertices in different components ofG′ − S, so that
|{x, y} ∩ {a, b}| is minimal. Then either

1. a 6= x, y soG − (S
⋃

a) is disconnected; or

2. b 6= x, y soG − (S
⋃

b) is disconnected; or

3. {x, y} = {a, b} soV (G) = S
⋃

{a, b}, so|G| ≤ k + 2.

All cases imply thatκ(G) ≤ k + 1.

Corollary 4.17. A graph isk-connected iff any two vertices are joined by at leastk
independent paths.

Proof. If G is not a complete graph,κ(G) = minκ(a, b;G). Apply Menger’s theorem.
Kn is k-connected iffn ≥ k + 1, so true for a complete graph.

Corollary 4.18. A graph isk-edge-connected iff any two vertices are joined by at least
k edge disjoint paths.



Chapter 5

Matchings

Definition 5.1 (k-factor). A k-factor of a graphG is a k-regular spanning subgraph,
that is, a subgraphH with δ(H) = ∆(H) = k.

Definition 5.2 (Matching). LetG be a bipartite graph with vertex classesX andY . A
matching inG is a set of|X| independent edges.

If |X| = |Y | then a matching is a 1-factor.

Theorem 5.3(Hall’s marriage theorem). LetG be a bipartite graph with vertex classes
X andY . ThenG has a matching iff|Γ(S)| ≥ |S| for everyS ⊆ X.

Using Menger’s theorem.Join a new vertexa to all elements ofX and a new vertexb
to all elements ofY to formG′.

SupposeC is a set of vertices separatinga from b. ThenΓ(X \C) ⊆ Y ∩C. Now
|C| = |C ∩ X| + |C ∩ Y |. So |C| ≥ |C ∩ X| + |Γ(X \ C)|. By Hall’s condition
|Γ(X \ C)| ≥ |X \ C|. So |C| ≥ |C ∩ X| + |X \ C| = |X|. By the choice ofC,
κ(a, b;G) ≥ |X|.

Using Menger’s theorem there are|X| independent paths, giving a matching inG.

Direct. By induction on|X|.
The case|X| ≤ 1 is trivial.
Suppose that for everyS ⊂ X with S 6= ∅,X we have|Γ(S)| > |S|. Then take any

xy ∈ E(G). G − x satisfies Hall’s condition. By the induction hypothesisG − {x, y}
has a matching, soG has a matching.

Otherwise there exists a critical setT ⊂ X, T 6= ∅,X with |Γ(T )| = |T |. Let
G1 = G[T

⋃

Γ(T )] andG2 = G[(X \ T )
⋃

(Y \ Γ(T ))].
G1 clearly satisfies Hall’s condition. LetS ⊆ X \T . NowΓG2

(S) = ΓG(S
⋃

T )\
ΓG(T ).

|ΓG2
(S)| ≥ |ΓG(S

⋃

T )| − |ΓG(T )|

≥ |S
⋃

T | − |T | = |S|

So by induction hypothesis there is a matching onG1 andG2, giving a matching
in G.

13
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Corollary 5.4 (Defect form of Hall’s theorem). Let d ≥ 0 be an integer. If|Γ(S)| ≥
|S| − d for all S ⊆ X then there is a matching of all butd elements ofX.

Proof. Addd extra vertices toY connected to all vertices ofX. Then by Hall’s theorem
there is a matching. Remove the additional vertices, to makea matching of all butd
elements ofX.

Corollary 5.5 (Polygamous form). Let d ≥ 1 be an integer. If|Γ(S)| ≥ d|S| for all
S ⊆ X, then we can match eachx ∈ X to d elemens ofY , the differentd element sets
being disjoint.

Proof. Replace eachx ∈ X with d nodes connected toΓ(x). Hall’s theorem gives a
matching.



Chapter 6

Extremal graph theory

Definition 6.1 (Monotone). A property of a graph is monotone if the whole graph has
the property when a subgraph does.

Definition 6.2 (Non-trival property). A property of a graph is non-trivial if the empty
graph does not have the property.

Definition 6.3 (Extremal problem). The study of the minimum size of a graph with a
monotone, non-trivial property, or the maximum size of a graph without it.

Theorem 6.4(Condition for a graph to be Hamiltonian). LetG be a connected graph of
ordern ≥ 3. Suppose that for every pair of non-adjacent verticesa, b, d(a)+d(b) ≥ k.

If k < n thenG has a path of lengthk. If k ≥ n thenG is Hamiltonian.
Note that ifk ≥ n then the degree condition implies thatG is connected.

Proof. Suppose thatG is not Hamiltonian. LetP = x1 · · ·xl be a path of maximal
length.

Claim. G has no cycle of lengthl. Proof of claim. Suppose there is a cycle.
Obviously if l = n thenG is Hamiltonian, contradiction. Ifl < n then there is a vertex
w not in the cycle.G is connected, so we can find a path from the cycle tow, giving a
path longer thanl, contradiction.

In particular,x1xl /∈ E(G). Now by hypothesisd(x1) + d(xl) ≥ k.
Let S = {2 ≤ i ≤ l : x1xi ∈ E(G)}, T = {2 ≤ i ≤ l : xi−1xl ∈ E(G)}. If

j ∈ S ∩ T thenx1xjxj+1 · · ·xlxj−1xj−2 · · ·x1 is a cycle of lengthl. SoS ∩ T = ∅.
Certainly l /∈ S, T andS

⋃

T ⊆ {1, · · · , l}, so in factk ≤ d(x1) + d(xl) =
|S| + |T | ≤ l − 1.

If k < n then we have a path of lengthl − 1 ≥ k, so a path of lengthk.
If k = n then we have a path of lengthn, which is a contradiction because it must

involven + 1 vertices. ThereforeG is Hamiltonian.

Corollary 6.5 (G.A. Dirac). If δ(G) ≥ n
2 thenG is Hamiltonian.

Theorem 6.6. LetG be a graph withn vertices and no path of lengthk. Thene(G) ≤
(k − 1)n

2 with equality iffG is a union of copies ofKk.

Proof. By induction onn.
If n ≤ k thene(G) ≤

(

n
2

)

≤ (k − 1)n
2 with equality iff G = Kk.

15
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Considern > k. If G is disconnected apply induction to each component. Other-
wiseG is connected andKk 6⊂ G, or there would be a vertexw that could be joined to
a path traversing theKk to make a path of lengthk.

By theorem 6.4 at least onev ∈ V (G) hasd(v) ≤ k−1
2 . By the induction hypothe-

sise(G − v) < k−1
2 (n − 1). Thereforee(G) < k−1

2 n.

6.1 Complete subgraphs and Tuŕan’s theorem

We’ve seen the maximum size of a graph containing no path of a certain length. What
is the maximum size of a graph containing noKr?

Definition 6.7 (r-partite graph). An r-partite graph is a graph with a vertex partition
V1, . . . , Vr so that eachVi is an independent set (i.e.G[Vi] is empty of edges).

Certainly no(r − 1)-partite graph containsKr.
What is the maximum size of a(r − 1)-partite graph? Clearly we should look at

a complete(r − 1)-partite graph, where any pair of vertices in different classes are
joined.

Suppose two class orders differ by more than 1,|Vi| ≥ |Vj | + 2. Moving a vertex
from Vi to Vj increases the number of edges by|Vi| − |Vj | − 1 ≥ 1. Therefore the
classes are as equal as possible.

Definition 6.8 (Turán graph,Tr and tr). The Tuŕan graphTr(n) is the completer-
partite graph of ordern with classes orders⌊n

r ⌋ or ⌈n
r ⌉.

We writetr(n) = e(Tr(n)).

Theorem 6.9(Turán’s theorem; maximum sized graph not containingKr). Let G be
a Kr free graph of ordern with e(G) ≥ tr−1(n) thenG = Tr−1(n).

Proof. The vertices inTr(n) with least degree belong to vertex class of greatest order,
by removing one of these we getTr(n − 1).

tr−1(n) − δ(Tr−1(n)) = tr−1(n − 1) (6.1)

Furthermore the degrees are as equal as possible.

∆(Tr−1(n)) − δ(Tr−1(n)) ≤ 1 (6.2)

By induction onn. True forn ≤ r − 1, becauseTr−1(n) is Kn for n ≤ r − 1.
In general letG′ ⊂ G be a spanning subgraph withtr−1 edges. CertainlyG′ is also

Kr free. Now apply the handshaking lemma toG′

nδ(G′) ≤ 2e(G′)

= 2tr−1

≤ δ(Tr−1(n)) + (n − 1)∆(Tr−1(n))

Using 6.2

≤ nδ(Tr−1(n)) + n − 1

δ(G′) ≤ δ(Tr−1(n))
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Pickv ∈ V (G′) a vertex of minimum degree. ThenG′ − v is againKr-free.

e(G′ − v) = e(G′) − δ(G′)

= tr−1(n − 1)

by 6.1.
So by the induction hypothesis,G′− v is a complete(r−1)-partite graph. InG′, v

cannot be joined to all vertex classes inG′ − v, since otherwiseG′ would containKr.
SoG′ is (r − 1)-partite. Bute(G′) = tr−1(n) andTr−1(n) is the only(r − 1)-partite
graph of that size, soG′ = Tr−1(n).

Adding any new edge toTr−1(n) creates aKr, soG = G′ = Tr−1(n).

Theorem 6.10(Turán’s theorem; alternative forumulation and proof). LetG be aKr-
free graph with vertex setV . Then there exists a(r − 1)-partite graphH with vertex
setV , anddH(v) ≥ dG(v) for all v ∈ V .

Proof. By induction onr.
Caser = 2 trivial.
In general, we pickx a vertex ofG of maximum degree.
Let G′ = G[Γ(x)]. ThenG′ is Kr−1 free. LetV ′ = Γ(x).
By induction, there is a(r − 2)-partite graphH ′ with vertex setV ′ anddH′(v) ≥

dG′(v) ∀v ∈ V ′. FormH by joining every vertex inV \ V ′ to H ′.
Now constructH by joining every vertex inV \V ′ to H ′. ThenH is (r−1)-partite.

Need to showdH(v) ≥ dG(v) for all v ∈ V .
If v ∈ V \ V ′, dH(v) = ‖V ′‖ = dG(x). But dG(x) ≥ dG(v) ∀v ∈ V .
Otherwise,v ∈ V ′. dH(v) = ‖V \ V ′‖ + dH′(v). But dH′(v) ≥ dG′(v). Now

dG(v) ≤ dG′(v) + ‖V \ V ′‖, sodH(v) ≥ dG(v). Done.

Lemma 6.11(Alternative formulation of Tuŕan’s theorem implies original). Let G be
a Kr free graph of ordern with e(G) ≥ tr−1(n) thenG = Tr−1(n).

Proof. Only remains to showe(G) ≤ tr−1(n), as certainlyTr−1(n) is the unique
(r−1)-partite graph of sizetr−1(n). By previous theorem there exists a(r−1)-partite
graphH with vertex setV (G), anddH(v) ≥ dG(v) for all v ∈ V (G).

e(G) = 1
2

∑

v∈V (dG(v) ≤ 1
2

∑

v∈V dH(v) = e(H). Now certainlyH is (r − 1)-
partite, andtr−1(n) is the maximum number of edges of an(r − 1)-partite graph. So
e(G) = e(H) ≤ tr−1(n).

Lemma 6.12(Variant on the alternative formulation of Turán’s theorem). Let G be a
graph of ordern, and letx ∈ V (G) of degreed = ∆(G). If e(G[Γ(x)]) ≤ tr−2(d),
thene(G) ≤ tr−1(n).

Proof. Let V ′ = Γ(x). Let H ′ be a copy ofTr−2(d) with vertex setV ′. Form an
(r − 1)-partite graphH by joining every vertex inV \ V ′ to H ′. Certainlye(H) ≤
tr−1(n).

Now e(H) − e(H ′) ≥ e(G) − e(G[V ′]), so if e(G[V ′]) ≤ e(H ′) thene(G) ≤
e(H) ≤ tr−1(n).
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Corollary 6.13 (Variant on alternative formulation of Turán’s theorem). If G has order
n and sizee(G) > tr−1(n), thenG containsKr as a subgraph.

Proof. By induction onr. Caser = 2 is trivial.
In general we take a vertexx ∈ V (G) with degreed = ∆(G). By the last lemma

e(G[Γ(x)]) > tr−2(d) ase(G) > tr−1(n). By induction,G[Γ(x)] containsKr−1, so
G containsKr.

Observation 6.14(Method for findingKr in a graph). This corollary gives us an
algorithm for findingKr in a graph that has more edges thantr−1(‖G‖). Take vertex
xr of degree∆(G). LetGr = G[Γ(xr)]. Givenxn, Gn with n > 1, takeGn−1 to be
Gn[ΓGn

(xn)] andxn−1 to be a vertex of highest degree inGn.
By the lemma,Gn, n > 1 containsKn−1. ThereforeG[x1, · · · , xr] ∼= Kr.

6.2 The problem of Zarankiewicz

Definition 6.15 (Zarankiewicz problem,z(n; t)). The bipartite analogue of Turán’s
problem is to find the maximum number of edgesz(n; t) in an (n, n)-bipartite graph
not containing a subgraphKt,t.

The value ofz(n; t) is not known.

Theorem 6.16(Zarankiewicz). Lety = 1
nz(n; t). Then

(

y
t

)

≤ t−1
n

(

n
t

)

.
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Graph colouring

7.1 Vertex colouring and Brooks’ theorem

Definition 7.1 (Vertex colouring). A vertexk-colouring of a graphG is a function
c : V (G) 7→ {1, 2, · · · , k}, such thatc(x) 6= c(y) ∀xy ∈ E(G).

We sayG is k-colourable if there is ak-colouring ofG. ClearlyG is k-colourable
iff it is k-partite.

Definition 7.2 (Chromatic number). The chromatic numberχ(G) of a graphG is the
minimumk for whichG is k-colourable.

Definition 7.3 (Greedy algorithm). Given an orderingv1, · · · , vn of V (G), the greedy
algorithm colours the vertices sequentially, giving vertex vi the smallest colour in
{1, 2, · · · , n} that is not inc(Γ(vi) ∩ {v1, v2, · · · , vi−1}).

Clearly the number of colours used by the greedy algorithm depends on the order of
the vertices. Furthermore given a colouring that uses onlyχ(G) colours it is possible
to order the vertices so that the greedy algorithm will use nomore thanχ(G) colours.

Lemma 7.4(Upper bound onχ(G)). Given a graphG, χ(G) ≤ 1 + ∆(G)

Proof. Given a vertexx, then the greedy colouring algorithm will not give it a colour
value more thand(x) + 1.

Therefore the greedy colouring algorithm colours all graphs with no more than
∆(G) + 1 colours, soχ(G) ≤ 1 + ∆(G).

Theorem 7.5(Upper bound onχ(G)). χ(G) ≤ 1 + maxH⊆G δ(H) whereH ranges
over all induced subgraphs ofG (includingG).

Proof. We constructively describe a way of colouringG, by specifying a vertex order
for the greedy colouring algorithm.

Letn = ‖V ‖. LetHn = G. Letxn be a vertex inHn with degreeδ(Hn). Certainly
δ(G) < 1 + maxH⊆G δ(H). Let Hn−1 = Hn − {xn}, n > 1.

The sequencex1, x2, x3, · · · , xn presents to the greedy colouring algorithm a se-
ries of vertices which have had at mostmaxH⊆G δ(H) neighbours already coloured.
Therefore at most1 + maxH⊆G δ(H) colours can be used.

This bound is certainly exact for a complete graph.
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Theorem 7.6(Brooks). If G is connected thenχ(G) ≤ ∆(G), unlessG is complete
or G is an odd cycle.

Proof. Certainly by the greedy algorithmχ(G) ≤ ∆(G) + 1.
Let ∆ = ∆(G).
If χ(G) = ∆ + 1 then by 7.5 there is a subgraphH of G with δ(H) = ∆ (H is

∆-regular). ButG is connected and no vertex not inH can connect toH, soG = H
andG is ∆-regular.

Now supposeDelta = 1. ThenG = K2. Suppose∆ = 2. ThenG = C3.
Therefore we need only consider∆ ≥ 3.

Sorry, but the rest of the proof will be omitted. The method isto take a vertex of
degree∆ (the minimal degree) and as in the proof of Vizing’s theorem,consider the
componentsHij of vertices coloured eitheri or j and the relationship its neighbours.
By considering switchingi,j in these components one can show that the neighbours
are pairwise joined.

Definition 7.7 (Chromatic polynomial). Let G be a graph. LetPG(x) be the number
of ways of colouringG usingx colours.

Definition 7.8 (Notation for contracting edgesG/e). LetG be a graph. Lete ∈ E(G).
ThenG/e is the graph obtained by identifying the endpoints ofe. That is if e joins
verticesx, y then for each edgeyz join z to x if z is not already joined tox. Then
removey.

Theorem 7.9 (Induction step on the chromatic polynomial). Let e ∈ E(G). Then
PG(x) = PG−e(x) − PG/e(x).

Proof. Let e = uv. The colouringsc of G − e that are not colourings ofG are those
with c(u) = c(v), which are precisely the colourings ofPG/e(x).

Corollary 7.10 (The chromatic polynomial is a polynomial). PG(x) is a polynomial
in x. Furthermore,PG(x) = xn − a1x

n−1 + a2x
n−2 + · · ·+(−1)nan with n = ‖G‖,

a1 = e(G) and allai ≥ 0.

Proof. By induction one(G). True for the empty graph. In general lete ∈ E(G).
Now PG−e(x) = xn − b1x

n−1 + b2x
n−2 + · · · + (−1)nbn, PG/e(x) = xn−1 −

c1x
n−2 + (−1)(n − 1)cn−1, wheren = ‖G‖, b1 = e(G) − 1 and allbi, ci ≥ 0.
Now by the theorem,PG(x) = PG−e(x) − PG/e(x), so PG(x) = xn − (b1 +

1)xn−1 + (c1 + b2)x
n−2 + · · · + (−1)n(bn + cn−1), a polynomial of the same form.
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Edge colouring and Vizing’s
theorem

Definition 8.1 (Edge colouring). A k-edge colouring of a graphG is a functionc :
E(G) 7→ {1, 2, · · · , k} such that incident edges receive different colours.

Definition 8.2 (Edge chromatic number, chromatic index). Given a graphG, the edge
chromatic number or chromatic indexχ′(G) is the leastk for which G is k-edge-
colourable.

Certainly∆(G) ≤ χ′(G).

Theorem 8.3(Vizing). ∆(G) ≤ χ′(G) ≤ ∆(G) + 1

Proof. The lower bound is trivial. For the upper bound we do induction on the number
of edges.

Suppose we have a colouring of all but one edgexy ∈ E(G) using colours{1, 2, · · · ,∆(G)+
1}. Then we wish to recolour so all the edges are coloured.

Note that one colour is unused (“missing”) at every vertex.
Let xy0 be the uncoloured edge. We construct a sequence of edgesxy0, xy1, · · ·

and a sequence of coloursc0, c1, · · · as follows.
Pick ci to be a colour missing atyi. Let xyi+1 be an edge with colourci. We stop

with k = i when eitherck is a colour unused atx, or ck is already used onxyj for
j < k.

If ck was a colour unused atx then we recolourxyi with ci for 0 ≤ i ≤ k. This
finishes the easy case where we can recolour the edges touching x to give a a colouring
for G.

Otherwise we recolourxyi with ci for 0 ≤ i < j and uncolourxyj . Notice thatck

(red) is missing at bothyj andyk. Let blue be a colour unused atx.

1. If red is missing atx, we colourxyj red.

2. If blue is missing atyj we colourxyj blue.

3. If blue is missing atyk we colourxyi with ci for j ≤ i < k and colourxyk blue.
(None of thexyi, j ≤ i < k are red or blue.)

If none of the above hold, then we consider the subgraph of redand blue edges.
The components of this subgraph are paths or cycles. The verticesx, yi, yk are the end
vertices of paths. Therefore they cannot all belong to the same component.
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Select a component that contains exactly one of these vertices. Now swap over red
and blue in this component. Now one of the conditions above must apply.

Theorem 8.4 (Edge chromatic number of a bipartite graph). If G is bipartite, then
χ′(G) = ∆(G).

Proof. We embedG in a ∆(G)-regular bipartite multi-graph as follows: We replace
G by two copies ofG and forv′, v′′, the copies ofv ∈ V (G), we join v′ to v′′ with
∆(G)−dG(v) parallel edges. This creates a bipartite multi-graphH with vertex classes
(X ′

⋃

Y ′′) and(Y ′
⋃

X ′′) if X andY were the original vertex classes inG.
Now we prove the theorem for∆-regular bipartite multi-graphsH by induction on

‖H‖ + ∆(H).
Clearly true for∆(H) = 1.
Let uv be an edge ofH, Delete the verticesu andv. Becauseu andv were in

different vertex classes, it is possible to add fewer than∆ new edges to make a new
∆-regular bipartite multi-graphH ′. Now we colourH ′ by the induction hypothesis.
Certainly not all the colours were used to colour the new edges. Let red be one of these
colours. Certainly the red edges inH ′ with uv form a 1-factor in G. Deleting this
1-factor gives a(∆ − 1)-regular bipartite multigraphH ′′.

Now colourH ′′ by the induction hypothesis, then add the1-factor back, to obtain
a colouring ofH.

Definition 8.5 (List colouring,L-choosable). Let L : V (G) 7→ { finite subsets ofN
}, so that each vertexv has a “paint box” L(v). We say thatG is L-choosable if
∃c : V (G) 7→ N such thatc(v) ∈ L(v) ∀v andc is a vertex colouring.

Definition 8.6 (k-choosable). We say thatG is k-choosable ifG is L-choosable when-
ever‖L(v)‖ = k, ∀v ∈ V (G).

Clearly if G is k-choosable it isk+1-choosable. However it is not necessarily true
that if G is k-choosable it isk-colourable.

Definition 8.7 (List chromatic numberχl(G)). The list chromatic numberχl(G) of a
graphG is the leastk such thatG is k-choosable.



Chapter 9

Colouring graphs on surfaces

9.1 Plane graphs

Definition 9.1 (Dual graphG∗). Given a plane graphG we can form a new graphG∗
by drawing a vertex in the middle of each ofG’s faces, and joining vertices if their
corresponding faces are adjacent.

Lemma 9.2(Condition for duality of dual). G∗∗ = G iff G connected andλ(G) > 2.

Proof. If G∗ is always connected, soG ∗ ∗ is as well, soG must be.
Always e(G∗) ≤ e(G) as each edge in the original graph may be crossed at most

once by an edge in the dual. Ifλ(G) is 1 thenG has a bridge, which certainly will not
be crossed by an edge in the dual, soe(G∗) < e(G). If λ(G) is 2 then there is an edge,
which if removed, would leave a bridge inG. so againe(G∗) < e(G). In both cases
e(G ∗ ∗) ≤ e(G∗) < e(G).

If λ(G) ≥ 3 then any pair of faces has at most a single common boundary edge so
G ∗ ∗ = G.

Definition 9.3 (Plane map). A plane map is a plane graph together with its set of faces.

Definition 9.4 (Face colouring). A (face) colouring of a plane map is an assignment
of colours to the faces of the map with the condition that faces sharing an edge have
different colours.

Example 9.5. Let G be a plane graph with every vertex of even degree. Then every
face in the dual has an even number of sides.

Therefore every cycle in the dual is even, so the dual is bipartite, so there is a face
colouring ofG with just two colours.

Definition 9.6 (Four colour conjecture). The four colour conjecture (4CC) asserts that
every plane map can be 4-face coloured. Alternatively everyplane graph hasχ(G) ≤ 4
by considering the dual.

The 4CC was made popular by Cayley in 1878. Almost at once, “proofs” appeared:
Kempe 1879, Tait 1880.
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