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Chapter 1

Introduction

The notes were typed up by me, John Frerpldhn@ r em i n. de.

These notes are based on the part IIA mathematics cours@liGnaory” given
by Dr Fisher in Cambridge in Michaelmas 2003. These notesareannected to Dr
Fisher in any way. If there are any mistakes in them, it is mbea very likely that
they are my fault.

| added a few clumsy elucidations, to the arguments thatihlhi did not under-
stand, which will no doubt ensure that there are at least samoes, because | could
not find any in Dr Fisher’s lectures.

Furthermore these notes are very definitely no substitutadmally going to lec-
tures, because they do not include all of the material anelcgsity examples covered,
or any of the asides.

Finally, | would like to thank Dr Fisher for his supervisignghere he taught me a
lot about mathematics.
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Chapter 2

Graphs

Definition 2.1 (Graph) A graphis a pair(V, E) with E C V2,
Loops and multiple edges are forbidden.

Definition 2.2 (Vertices) V = V(G) is the set of vertices aF.
Definition 2.3 (Edges) E = E(G) is the set of edges 6.

Example 2.4 (Complete graph) K, is the complete graph on vertices (all (%)
edges).

Example 2.5(Cycle). C,,,n > 3 is a cycle of lengthn; it has verticesvy, va, -+ , v,
and edgesvg, vav3, - - -

Definition 2.6 (Isomorphic graphs)Two graphs;, G2 are isomorphic (symbak) if
there is a bijectionp : V(G1) — V(Gs) : zy € E(G1) & ¢(z)p(y) € E(G2).

Definition 2.7 (Complement) The complement @ = (V, E) isG = (V,V® \ E).
Example 2.8(C"® isomorphic taC5).

Definition 2.9 (Subgraph) A subgraph of a grapli¥ is a graphH with V(H) C V(G)
andE(H) C E(G).

Definition 2.10(Induced subgraph)H is an induced subgraphE(H) = E(G) N V®) (H).
The induced subgraph with vertex $8tC V (G) is written G[W].

Definition 2.11 (Spanning subgraph)H is a spanning subgraph If (H) = V(G).

Definition 2.12 (Walk). A walk in a graph is a sequence of vertiegswvs, - - - ,vx €
E(G)V1 < i < k. ltslength isk — 1. Itis closed ifv; = vy.

Definition 2.13(Trail). A trail is a walk with no repeated edges.

Definition 2.14 (Euler trail/circuity An Euler trail/circuit is a trail or circuit which
passes through all the edges.

Definition 2.15 (Eulerian) A graph is Eulerian if it has an Euler circuit.

Definition 2.16 (Path) A path is a walk (a trail) with no repeated vertices.
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4 CHAPTER 2. GRAPHS

Definition 2.17 (Cycle). A cycle is a closed walk of length 3 with distinct vertices
except that the frist and last are equal (isomorphicitg).

Definition 2.18 (Hamilton trail/circuit) A Hamilton path/cycle is a path/cycle which
goes through every vertex of the graph.

Definition 2.19 (Hamiltonian) A graph is Hamiltonian if it has a Hamilton cycle.

Definition 2.20 (Neighbours of a vertex)Let z be a vertex of7, its neighbours or
adjacent vertices ar€(z) = {y € V(G) : zy € E(G)}.

Definition 2.21 (Degree of a vertex)The degree of a vertexis d(x) = ||T'(z)]|.

Definition 2.22 (Degree sequence of a graph)he degree sequence of a graph is a
graph with verticesy, - - - ,v,, isd(v1), -+, d(vy,).

Definition 2.23 (Maximum, minimum degree)The minimum/maximum degree of a
vertex ofG is denotedi(G) or A(G) respectively.

Definition 2.24 (Regular) A graphG is regular if §(G) = A(G).

Definition 2.25 (Size of a graph) e(G) = ||E(G)|| is the number of edges df, its
size.

Definition 2.26 (Order of a graph) ||G|| = ||V (G)| is the number of edges 6f, its
order.

Lemma 2.27(Handshaking lemma)}_ . d(v) = 2e(G)

Proof. Double count{(z,zy) : x € V(G),zy € E(g)}.
O

Observation 2.28. To solve problems try induction (on vertices, edges, anéroth
things), try double counting (counting something in mogmtone way), consider the
pigeon hole principle and consider extreme cases.

Definition 2.29 (Connected) A graph is connected if every pair of vertices is joined
by a path.

The relationship o/ (G) wherex ~ y where is a path betweenand y is an
equivalence relation. The equivalence classes are catbetponents ofs.
Definition 2.30(Acyclic). A graph is acyclic if it has no cycles.
Definition 2.31(Tree) A tree is a connected acyclic graph.

Definition 2.32 (Forest) A forest is an acycle graph.

Theorem 2.33(Properties of a tree)The following are equivalent
1. G is atree (connected, acyclic)
2. G is minimal connected

3. G'is maximal acyclic



Proof. i = ii. Let G be connected and acyclic. Let € E(G). If G — uv were
connected then any — v path inG — uv would give a cycle irG.

i = i. If C were a cycle inG anduv € E(G) then anyz — y path inG passing
via uv could be patched up t© — wwv to give a path inG — wv. Contradiction.

i = iii. Let uv ¢ E(G). SinceG connectediu — v path inG so there is a cycle
in G + uv. Contradiction.

iii = i. SupposeG is not connected. Let, v be vertices ofG belonging to
different components= + wv contains no cycles. Contradiction.

O

Corollary 2.34. A graph is connected iff it has a spanning tree (Gehas a subgroup
T,T atree andV (T) = V(G)).

Proof. AssumeG has a spanning tréé. Then there is a path ifi and so inG between
all vertices.
Let T be minimal connected spanning subgrapltzofBy previous theorem it is a
tree.
O

Definition 2.35(Leaf). A leafis a vertex with d(v) = 1.
Lemma 2.36(Trees have leavesEvery treel” of ordern > 2 has at least two leaves.

Proof. Let P = z; - - -, be a path of maximal length ifi. ThenI'(z;) C P, sinceP
is maximal.T is acyclic sal'(z1) N P = {x2}. Similarly for zy.
O

Theorem 2.37(Size of a tree) A tree of ordem has sizev — 1. e(T) = ||T'|| — 1. (In
fact a connected grapty withe(T) = ||T|| — 1 is a tree, exercise.)

Proof. By induction onn. Clearly true forn < 2. LetT be a tree of orden and let
v € V(T) be a leaf. Letr,y be vertices ofl" — v. There is anc — y path inT. So
T connected implie§” — v connected s@” — v is a tree. By inductior(T — v) =
n—2 = el)=eT —v)+1=n—-1.

O

Observation 2.38(Number of possible graphs)f vertices are labelled, - - - , n there

are (’2‘) possible edges and each subset gives a graph so theﬁé%rpossible graphs.
If the vertices are unlabelled then each graph can be labakheat mostn! possible

ways. So there are at Iea%g graphs.
Theorem 2.39(Cayley) There aren™~2 labelled trees of orden.

Proof. (Due to Piifer.) Given a labelled tree we constract a sequeneae-cf numbers
in the rangel, - - - , n as follows.

Select the lowest labelled leaf. Write down its neighbourlei2ethe leaf. Repeat
until just two vertices remain. Now have a functigrirom set of labelled trees of order
nto{l,---n}"2

Claim: f is injective. Each vertex appearsl(v) — 1 times in the sequence. Leaves
are vertices not appearing. Given a sequeige- - - ,a,,_2) letv; be the least vertex
not appearing, join it ta;. Let v, be the least vertex not appearing in the new se-
quence(vy, as, -+ ,an—_2), join it to as. Repeat until there are only two nodes not in
(v1,- -+ ,vn—2), join them together. The original graph is reconstructed.
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Claim: f is surjective. Every sequence produces a connected agyaltG with
e(@) = ||G]| — 1 which must be a tree (or else add more edges to make a tree and
produce a contradiction).
Deduce thaf is a bijection.
O

Definition 2.40 (Bipartite) A graph is bipartite with vertex classég, Y if X andY
partition V(G) and no edge of7 lies within X or Y (every edge goes between them).
We say thatX andY are independent sets. We sometimes think of coloukxingd
andY blue.

Theorem 2.41(Ko6nig). A graph is bipartite iff it contains no odd cycles.

Proof. Any cycle alternates between the two vertex classes, sodeadength.

We may suppose that the graphis connected, since a graph is bipartite if its
components are bipartite.

Let the distancel(u, v) betweenu,v € V(G) be the length of the shortegt— v
path. Letu € V(G). DefineU; = {v € V(G) : d(u,v) =i} fori =0,1,2,---.

Note that an edge d¥ can join vertices i; andU; only if j =iorj =4+ 1or
j=i—1.

Claim. There is no edge between verticed/in Proof. Ifyy’' € E(G) : y,y’ € U;
then select paths — y andu — 3’ of lengthi. Letw be the last common vertex. Then
w — y,w — y andyy’ form a cycle of lengti2(i — d(u, w)) + 1 contradicting absence
of odd cycles.

ColourUpg |JU2JUs - -+ redandUy | JUs |JUs - - - blue to give a bipartition
of G.

O

Definition 2.42 (Complete bipartite grapti,, ). K, is the complete bipartite
graph with vertex classes of order andn with all mn edges.

Definition 2.43(Planar graphs)A graph that can be drawn in the plane without cross-
ings is planar. A graph drawn in the plane is a plane graph.

Definition 2.44 (Face or country) If we omit (“cut out”) the vertices and edges of a
plane graph from the plane the remainder falls into conng@ctemponents called faces
or countries.

Theorem 2.45(Euler). LetG be a connected plane graph withverticese edges and
f faces. Them —e + f = 2.

Proof. By induction one = ¢(G). If e = n — 1 thenG is a tree and® = 1. Done.
If e >n — 1thereisacycl€ in G. Then anyry € E(C) separates two different
faces. Apply induction t@7 — zy givesn — (e — 1) + (f — 1) = 2.
O

Observation 2.46. It is convenient to use stereographic projection to considelane
graph as drawn on the sphere. Théhis connected iff all the faces are simply con-
nected (homeomorphic to the unit disc).

Definition 2.47 (Bridge). A bridge in a plane graph is an edge whose removal in-
creases the number of components.



Definition 2.48 (Bridgeless) In a bridgeless plane graph every edge separates two
different faces.
2e(G) = ), ifi wheref; is the number of-sided faces.

Definition 2.49 (Girth). The girth of a graphG is the length of the shortest cycle.

Theorem 2.50(Bound for number of edges in a planar grapbgt G be a bridgeless
plane graph withn vertices and girtry. Thene(G) < ﬁ(n — 2). In particular a
plane graph has at most: — 6 edges.

Proof. Add edges if necessary to ensure thas connected. It remains bridgeless and
planar. Theree = 3=, if; > g3, fi = gf. Sof < 2.

By Euler's theorerm — 2 = ¢ — f. Bute — f > e — 2 = %Qe — e<
g-%z(n —2).

O

Theorem 2.51(Kuratowski (unproved)) Kuratowski showed that the only non-planar
graphs are those that contain a subdivisior/of or K 3 obtained by replacing edges
with paths.

Theorem 2.52(Eulerian condition) A graph is Eulerian iff it is connected and every
vertex has even degree.

Proof. If the graph is Eulerian it must be connected. If a vertex lttbdegree the path
must pass in a different number of times from that which iseasout.

By induction on the number of edges. True for the empty gr&hced(G) > 2
there are no leaves 96 is not a tree. Therefor& must contain a cycl€'. Each
component of7 \ E(C) has vertices of even degree, so by induction hypothesis each
has an Euler circuit. By traversing take time out to traverse each of these circuits
when first encountered. We produce an Euler circuidasG is connected.

O

Corollary 2.53. A connected grapli- has an Euler trail from a vertex to a vertex
y # « iff x andy are the only vertices of odd degree.

Proof. If there is an Euler trail then obvious.
If z andy are the only vertices of odd degree then fa&hby adding a new vertex
u and joining it toz andy. By the theorenG’ has an Euler circuit. Deleting gives
an Euler trail fromz to y.
O
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Chapter 3

Flows, connectivity and
matching

Definition 3.1 (Flow). A flow in a digraphD with sources and sinki¢ is a function
f+ E(D) — Rxg such thatf, (z) = f_(z) Vx € V(D) \ {s,t} wheref,(z) =
> yayerp) f(@y) (the flow out ofr) and f_(z) = >_, . . c p(p) [ (y2) (the flow into
x). Convenient to sef(zy) = 0if zy ¢ E(G).

Definition 3.2 (Directed edge) xy is the directed edge fromto y. Loops and multiple
edges are forbidden, so certainfyxy) = 0 or f(yxz) = 0.

Observation 3.3. We imaginef as representing a flow of water or electricity in a
network, being pumped in &t and being pumped out at The conditionf, (z) =
f—(z) expresses that flow is conserved at each vertex.

Definition 3.4 (Value of the flow) v(f) = f+(s) — f—(s) = f_(t) — f+(¢) is called
the value of the flow whereis the source and s the sink.

Definition 3.5 (Net flow). LetS C V(D) withs € S andt ¢ S. LetS = V(D) \ S.
The net flow fronf to S'is f(S,5) = 3, es(f(zy) — flyz)).

Since)", e s(f(xy)—f(yz)) = Owe getf(S,5) = 3, cs ev (f(2y)—flyz)) =
> wes(f+(@) = f-(2) = f4(s) = f-(s) = v()).

Definition 3.6 (Capacity function) Given a capacity function : E(D) — Rx>q we
require that0 < f(zy) < c(ay) forall zy € E(D).

Definition 3.7 (Cut). LetS C V(D) withs € Sandt ¢ S. LetS = V(D) \ S. The
set of edged?(S,5) = {xy € E(D) : x € S,y € S} is called a cut with capacity
C(S7 S) = ZzGS,yGS’ C(l’y) _ _

For any cut we have(f) = f(S,95) < ¢(S,5).

Theorem 3.8(Max-flow min-cut (MFMC)) The maximum value of a flow (sourge
and sinkt) in a network is equal to the minimum cut capacity.

Proof. The maximum flow in a network is less than or equal to the mimmuuwt ca-
pacity. Letf be a flow. We construc§ C V(D). Initially let S = {s}. Then put
y € Sifeither3x € S: f(zy) < ¢(xy) or Iz € S with f(yx) > 0. Repeat.

If t € S then there is a sequence of vertices starting with yo, y1, - ,yx = ¢
where for each < i < k eitherc(y;—1,y:) — f(Yi—1,y:) = & > 00r f(y;,vi—1) =

9



10 CHAPTER 3. FLOWS, CONNECTIVITY AND MATCHING

d; > 0. Letd = mini<;<xd;. We construct a new floyf : E(D) — Rx( equal to
f except on thes — ¢ path but withf’(yi—1,y:) = f(yi-1,9:) + 0 Or f'(yi, yi-1) =
f(yi,yi—1) — 6 as appropriatef’ is a flow. v(f') = v(f) + § so f was not maximal,
contradiction.

Algorithm increases. Take a subsequence monotonic on elgeh &ake the limit.
This flow has value of limit so it is maximal.

Ift ¢ S. LetS = V(D) \ S. E(S,S) is a cut. For everyy with » € S and
y € S we havef(xy) = c(xy). For every edggr, » € Sy € S we havef(yx) = 0.
o(f) = F(5,5) = Ypesyes(f@y) — f(yz)) = Yues,es clzy). Thatis, the value
of the flow is the cut capacity of some cut.

O

Corollary 3.9 (Integrability theorem) In a network with integer valued edge capacities
there is a maximal flow whose value is equal to the minimumagadaity, which has
integer values at each edge.

Proof. Follow MFMC starting with the zero flow. Thehis always integer.
O

Observation 3.10. Note that there may be a maximal flow which is not integer \éhlue
on each edge.

Definition 3.11 (Multiple sinks and sources)Consider multiple sources,, - - - , sg
and multiple sinkgy,--- ,t;. The value of the flow is(f) = Zle(h(si) —
fo(si) =S (f-(t;) — f+(t;)) and a cut isE(S, S) wheresy, - -+ , s, € S and

Jj=1

tr,oe th €S,

Corollary 3.12 (MFMC for multiple sources and sinks)n a multiple source network
the maximum value of a flow is equal to the minimum cut capacity

Proof. We construct a new network by joining a supersowde si,--- ,s; and a
supersink to ¢y, - - - , ¢; using edges of infinite capacity.
Apply MFMC. Note that any cut of finite capacity cannot touciyesss; or t;t so
cut can be applied to original graph.
O

Definition 3.13 (Vertex capacities)We can consider vertex capacities instead of edge
capacities. The capacity function is na : V(D) \ {s,t} — R>¢ and we want
0< fr(v)=f_(v) <c(v)VveV(D)\ {s,t}. Acutis now a set of vertices such
that D — S has nos — t path. It has capacity ;¢ c(v).

Corollary 3.14 (Vertex capacity version of MFMC)The maximum value of a flow in
a network with vertex capacities is equal to the minimum apgcity.

Proof. Construct fromD a new networkD’ with edge capacities. Replace each vertex
v by two verticesv_ andv, and an edge_v,. For each edgey € F(D) add an
edgez,y_ to D'. We givev_v, capacityc(v) give z,y_ infinite capacity. Apply
MFMC.

O



Chapter 4

Connectivity and the theorems
of Menger

Definition 4.1 (Notation for subgraphs)If G graph andS C V(G) thenG — S'is
the induced subgraph with edgesSndeleted. Giver¥' C E(G) thenG — F is the
spanning subgraph obtained by deleting edgeE.in

Definition 4.2 (k connected) A graph isk connected ifG| > k andG—S is connected
foranyS C V(G) with | S| < k.

Observation 4.3. The onlyk connected graph with+1 vertices is the complete graph
Kiy1.

Definition 4.4 (Connectivity) The connectivity off or x(G) = max{k : Gisk—connectegl.

Definition 4.5 (Local connectivity) If a,b € V(G) distinct andab ¢ E(G) the local
connectivityx(a, b; G) = min{k : 3S C V(G)\ {a,b} : |S| =k : G—Shasnoa—b
path}, the minimum number vertices separatingndb.

Observation 4.6. If G is not complete ther(G) = min, {x(a, b; G)}, which is the
same asning p.qp,pa¢ £(c)14(a, b; G) .
If G is complete themin, ;,{x(a, b; G) } does not have a value, batK,,) = n—1.

Definition 4.7 (k-edge connected)A graphG is k-edge connected & — F' is con-
nected for allF' C E(G) with |F| < k.

Definition 4.8 (Edge connectivity\(G)). The edge connectivity aff is \(G) =
max{k : G is k edge connectgd

Definition 4.9. If a,b € V(G) distinct then the local edge connectivityi&:, b; G) =
min{k : 3F C E(G) : |F| = k,G — F has noa — b path }. Note thatA\(G) =
min, , ANa, b; G).

Definition 4.10 (Independent paths)Two a — b paths are independent if their only
common vertices are, b.

Theorem 4.11(Menger) Vertex form. Let,b € V(G) distinct. ab ¢ E(G) then
k(a, b; G) = maximum number of pairwise independent b paths.

Edge form.a,b € V(G) distinct. Then\(a,b; G) = maximum number of edge
disjointa — b paths.

11



12 CHAPTER 4. CONNECTIVITY AND THE THEOREMS OF MENGER

Proof. Vertex form. Replace all edges € E(G) with two directed edges and give
each vertex capacity 1. Apply vertex form of max-flow min-tuget an integer flow
froma — b, k(a, b; G) since each vertex has capacitgr 0.
Edge form. Do the same thing but use the edge form of max-flawaut.
O

Definition 4.12 (Line graph) The line graphL(G) is the graph with a vertex, for
eache € E(G) and an edge.v; whenevee and f have a common end vertex@h

Observation 4.13. The edge form can be deduced from the vertex from, usingtae li
graph.

Observation 4.14. Given a setP of independent — b paths then certainlyP| <
k(a,b; G), but it is not necessarily possible to add pathsteo formx(a, b; G) inde-
pendent paths.

Observation 4.15. There is a multiple source - sink version of Menger’s theorem
Lemma 4.16. Assumeab € E(G) and letG’ = G —ab. Thenk(a, b; G') > k(G) — 1.

Proof. Let k = k(a,b;G’). ChooseS C V(G) \ {a,b} with |S| = kandG’ — S
disconnected. Let andy be vertices in different components 6f — S, so that
{z,y} N {a,b}| is minimal. Then either

1. a # z,ysoG — (SJa) is disconnected; or
2. b#x,ysoG — (S|Ub) is disconnected; or
3. {z,y} = {a,b} soV(G) = SU{a,b}, sO|G| < k + 2.

All cases imply thak(G) < k + 1.
O

Corollary 4.17. A graph isk-connected iff any two vertices are joined by at lefast
independent paths.

Proof. If G is nota complete graplk(G) = min (a, b; G). Apply Menger’s theorem.
K, is k-connected ifin > k + 1, so true for a complete graph.
O

Corollary 4.18. A graph isk-edge-connected iff any two vertices are joined by at least
k edge disjoint paths.



Chapter 5

Matchings

Definition 5.1 (k-factor). A k-factor of a graphG is a k-regular spanning subgraph,
that is, a subgrapt with6(H) = A(H) = k.

Definition 5.2 (Matching) LetG be a bipartite graph with vertex class&sandY. A
matching inG is a set off X | independent edges.
If | X| = |Y| then a matching is a 1-factor.

Theorem 5.3(Hall’'s marriage theorem)Let G be a bipartite graph with vertex classes
X andY. ThenG has a matching iff[’(S)| > |S| for everyS C X.

Using Menger’s theoremJoin a new vertex to all elements ofX and a new vertek
to all elements ot to form G'.
Suppose” is a set of vertices separatingrom b. ThenI'(X \ C') C Y N C. Now
IC] =]|CNX|+|CNY]|. So|C| > |CnX|+|I'(X\ C)|. By Hall's condition
INX\C)| > |X\C|. So|C| > |CnX|+]|X\C| = |X| By the choice ofC,
K(a,b; G) > | X|.
Using Menger’s theorem there dt&| independent paths, giving a matchingin
U

Direct. By induction on|X|.

The casdX| < 1is trivial.

Suppose that for every C X with S # (), X we haveI'(S)| > |S|. Then take any
zy € E(G). G — z satisfies Hall's condition. By the induction hypothe§is- {z, y}
has a matching, s@ has a matching.

Otherwise there exists a critical SBtC X, T # 0, X with |I'(T")| = |T. Let
Gi = GITUT(T)] andGs = G[(X \ T)U(Y \ T(T))].

G clearly satisfies Hall's condition. L&t C X \T. NowT'¢, (S) =T (SUT)\
Ta(T).

Te, (8)] = [Ta(S|JT) = [T (D)
> 1Tl - 17) = 19]
So by induction hypothesis there is a matchingtonand G, giving a matching

inG.
O

13



14 CHAPTER 5. MATCHINGS

Corollary 5.4 (Defect form of Hall's theorem)Letd > 0 be an integer. {T'(.S)| >
|S| — dforall S C X then there is a matching of all bdtelements ofX.

Proof. Add d extra vertices td&” connected to all vertices df . Then by Hall's theorem
there is a matching. Remove the additional vertices, to naakeatching of all but
elements ofX.

O

Corollary 5.5 (Polygamous form) Letd > 1 be an integer. IfT’(S)| > d|S] for all
S C X, then we can match eaghe X to d elemens oY, the differentd element sets
being disjoint.

Proof. Replace each € X with d nodes connected (x). Hall's theorem gives a
matching.
O



Chapter 6

Extremal graph theory

Definition 6.1 (Monotone) A property of a graph is monotone if the whole graph has
the property when a subgraph does.

Definition 6.2 (Non-trival property) A property of a graph is non-trivial if the empty
graph does not have the property.

Definition 6.3 (Extremal problem) The study of the minimum size of a graph with a
monotone, non-trivial property, or the maximum size of gopravithout it.

Theorem 6.4(Condition for a graph to be Hamiltonianl.etG be a connected graph of
ordern > 3. Suppose that for every pair of non-adjacent verticgs d(a)+d(b) > k.

If & < nthenG has a path of lengtl. If £ > n thenG is Hamiltonian.

Note that ifk > n then the degree condition implies th@tis connected.

Proof. Suppose thafr is not Hamiltonian. LetP = x; --- x; be a path of maximal
length.

Claim. G has no cycle of lengtlh. Proof of claim. Suppose there is a cycle.
Obviously ifl = n thenG is Hamiltonian, contradiction. If < n then there is a vertex
w not in the cycle GG is connected, so we can find a path from the cycle tgiving a
path longer tham, contradiction.

In particularxi2; ¢ E(G). Now by hypothesigl(z) + d(z;) > k.

LetS={2<i<l:muz € E(G)}, T={2<i<l:z12 € E(G)}. I
jeSNnTthenziz;xjp - xxj_12;_o- - x1 isacycle of length. SoSNT = 0.

Certainly! ¢ S, T andSUT C {1,---,l}, so in factk < d(z1) + d(z;) =
S|+ T <1-1.

If £ < nthen we have a path of length- 1 > k, so a path of length.

If & = n then we have a path of length which is a contradiction because it must
involve n + 1 vertices. Thereforé& is Hamiltonian. O

Corollary 6.5 (G.A. Dirac). If 6(G) > % thenG is Hamiltonian.

Theorem 6.6. Let G be a graph withn vertices and no path of length Thene(G) <
(k — 1) % with equality iffG is a union of copies oK.

Proof. By induction onn.
If n < kthene(G) < (5) < (k—1)% with equality iff G = K.

15
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Considem > k. If G is disconnected apply induction to each component. Other-
wiseG is connected an&’;, ¢ G, or there would be a vertex that could be joined to
a path traversing th&’;, to make a path of length.
By theorem 6.4 at least onec V/(G) hasd(v) < %1. By the induction hypothe-
sise(G —v) < £51(n —1). Thereforee(G) < £52n.
O

6.1 Complete subgraphs and Tuan’s theorem

We've seen the maximum size of a graph containing no path eftaio length. What
is the maximum size of a graph containing Kp?

Definition 6.7 (r-partite graph) An r-partite graph is a graph with a vertex partition
V1,...,V; so that eaclV; is an independent set (i.&[V;] is empty of edges).

Certainly no(r — 1)-partite graph containk,..

What is the maximum size of @ — 1)-partite graph? Clearly we should look at
a complete(r — 1)-partite graph, where any pair of vertices in different stz are
joined.

Suppose two class orders differ by more thafV}}, > |V;| + 2. Moving a vertex
from V; to V; increases the number of edges|by — |V;| — 1 > 1. Therefore the
classes are as equal as possible.

Definition 6.8 (Turan graph,T,. andt,). The Tuén graphT.,.(n) is the complete--
partite graph of ordem with classes orders” | or [ ].
We writet,.(n) = e(T,.(n)).

Theorem 6.9(Turan’s theorem; maximum sized graph not containig. Let G be
a K, free graph of orden with ¢(G) > t,_1(n) thenG = T,._1(n).

Proof. The vertices irl;.(n) with least degree belong to vertex class of greatest order,
by removing one of these we g&t(n — 1).
tr—1(n) —6(Tr_1(n)) =t,_1(n—1) (6.1)
Furthermore the degrees are as equal as possible.

A(Trfl(n)) - 5(TT71(n)) <1 (62)
By induction onn. True forn < r — 1, becausd;._;(n) is K, forn <r — 1.
In general lelG’ C G be a spanning subgraph with_; edges. Certainl¢’ is also
K., free. Now apply the handshaking lemmad6
nd(G') < 2¢e(G")
=261
< 8(Tr—1(n)) + (n — DA(T,_1(n))
Using 6.2

<né(Tr—1(n))+n—1
6(G") < 6(T—1(n))
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Pickv € V(G’) a vertex of minimum degree. Thé& — v is againk,-free.

e(G' —v) = e(G') — §(G")
= tr,l(n — 1)

by 6.1.

So by the induction hypothesi€, — v is a completér — 1)-partite graph. IrG’, v
cannot be joined to all vertex classe<ih— v, since otherwis€&’ would containk,..
SoG' is (r — 1)-partite. Bute(G’) = t,.—1(n) andT,._1(n) is the only(r — 1)-partite
graph of that size, s6’' = T,._1(n).

Adding any new edge t@,._;(n) creates &, SOG = G’ = T,_1(n).

O

Theorem 6.10(Turan’s theorem; alternative forumulation and prodfet G be aK .-
free graph with vertex sdat. Then there exists @ — 1)-partite graphH with vertex
setV,anddy (v) > dg(v) forall v € V.

Proof. By induction onr.

Caser = 2 trivial.

In general, we pick: a vertex ofG of maximum degree.

LetG’ = G[I'(z)]. ThenG' is K,._; free. LetV’ = T'(z).

By induction, there is & — 2)-partite graphH’ with vertex sef’’ anddy (v) >
de(v) Yo € V'. Form H by joining every vertex i/ \ V' to H'.

Now constructH by joining every vertex i/ \ V' to H'. ThenH is (r —1)-partite.
Need to showly (v) > dg(v) forallv € V.

IfoeV\V,dgWw)=|V'|| =de(x). Butdg(z) > dg(v) Vv € V.

Otherwisep € V. dH(U) = ||V\V/|| + dH/(U). But dH/(’U) > dgl(v). Now
dg(v) <dg (U) + ||V \ V/H, SOdH(U) > dg(v). Done.

O

Lemma 6.11(Alternative formulation of Tuiin’s theorem implies original)Let G be
a K, free graph of ordern with e(G) > ¢,_1(n) thenG = T,_1(n).

Proof. Only remains to show(G) < t._1(n), as certainlyZ,._;(n) is the unique
(r—1)-partite graph of size._; (n). By previous theorem there existéa— 1)-partite
graphH with vertex set’ (G), anddy (v) > dg(v) forallv € V(G).

e(G) =32 ,ev(da(v) < 33, ey du(v) = e(H). Now certainlyH is (r — 1)-
partite, andt,-_1 (n) is the maximum number of edges of @n— 1)-partite graph. So
e(G) =e(H) < t.—1(n).

O

Lemma 6.12(Variant on the alternative formulation of Tan’s theorem) Let G be a
graph of ordern, and letz € V(G) of degreed = A(G). If e(G[I'(x)]) < t,.—2(d),
thene(GQ) < t,_1(n).

Proof. Let V! = T'(z). Let H' be a copy ofT,._s(d) with vertex sefV’’. Form an
(r — 1)-partite graphH by joining every vertex i \ V' to H'. Certainlye(H) <
tr_l(n).
Now e(H) — e(H') > e(G) — e(G[V']), so if e(G[V']) < e(H') thene(G) <
e(H) < tr_1(n).
[
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Corollary 6.13 (Variant on alternative formulation of Tan’s theorem) If G has order
n and sizee(G) > t,._1(n), thenG containsk, as a subgraph.

Proof. By induction onr. Caser = 2 is trivial.

In general we take a vertexc V(G) with degreed = A(G). By the last lemma
e(GII'(z)]) > tr—2(d) ase(G) > t,._1(n). By induction,G[I'(x)] containsK,_1, SO
G containsk,.

O

Observation 6.14(Method for finding K- in a graph) This corollary gives us an
algorithm for findingk,. in a graph that has more edges than ; (||G||). Take vertex
x, of degreeA(G). LetG, = G[I'(x,)]. Givenz,,, G, withn > 1, takeG,,_; to be
G,[lq, (zn)] andz, ;1 to be a vertex of highest degreed,.

By the lemma(7,,, n > 1 containsK,,_;. ThereforeG[zy, - -- ,x,] = K.

6.2 The problem of Zarankiewicz

Definition 6.15 (Zarankiewicz problemz(n;t)). The bipartite analogue of Tan’s
problem is to find the maximum number of edgés; t) in an (n, n)-bipartite graph
not containing a subgrapk ;.

The value ot (n;t) is not known.

Theorem 6.16(Zarankiewicz) Lety = L z(n;t). Then(¥) < =1 (7).




Chapter 7

Graph colouring

7.1 \ertex colouring and Brooks’ theorem

Definition 7.1 (Vertex colouring) A vertexk-colouring of a graphG is a function
c¢:V(G) — {1,2,--- ,k}, such that(z) # c(y) Vzy € E(Q).

We say(C is k-colourable if there is &-colouring ofG. Clearly G is k-colourable
iff it is k-partite.

Definition 7.2 (Chromatic number) The chromatic numbey(G) of a graphG is the
minimumk for which G is k-colourable.

Definition 7.3 (Greedy algorithm) Given an orderings, - - - , v, of V(G), the greedy
algorithm colours the vertices sequentially, giving verte the smallest colour in
{1,2,--- ,n} thatis notinc(T'(v;) N {vy,ve, -+ ,v;-1}).

Clearly the number of colours used by the greedy algorithpedés on the order of
the vertices. Furthermore given a colouring that uses ogil§#) colours it is possible
to order the vertices so that the greedy algorithm will usemare thany (G) colours.

Lemma 7.4(Upper bound ory(G)). Given a graph, x(G) < 14+ A(G)

Proof. Given a vertexe, then the greedy colouring algorithm will not give it a calou
value more tham(z) + 1.
Therefore the greedy colouring algorithm colours all gsaplith no more than
A(G) + 1 colours, so(G) <1+ A(G).
O

Theorem 7.5(Upper bound ory(G)). x(G) < 1+ maxpcq 6(H) whereH ranges
over all induced subgraphs ¢f (including G).

Proof. We constructively describe a way of colourig§ by specifying a vertex order
for the greedy colouring algorithm.

Letn = ||V||. LetH, = G. Letx,, be avertex inf,, with degreej(H,,). Certainly
§(G) <14 maxyca 5(H) LetH,,_1 = H,, — {xn}, n > 1.

The sequenceq, zo, x3, - - ,x, presents to the greedy colouring algorithm a se-
ries of vertices which have had at mestx; ¢ §(H) neighbours already coloured.
Therefore at most + maxycq 6(H) colours can be used.

This bound is certainly exact for a complete graph.

O
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Theorem 7.6(Brooks) If G is connected ther(G) < A(G), unlessG is complete
or G is an odd cycle.

Proof. Certainly by the greedy algorithm(G) < A(G) + 1.

Let A = A(G).

If x(G) = A + 1then by 7.5 there is a subgraghof G with 6(H) = A (H is
A-regular). ButG is connected and no vertex not i can connect tdd, soG = H
andG is A-regular.

Now supposeDelta = 1. ThenG = K,. SupposeA = 2. ThenG = Cj.
Therefore we need only considaAr> 3.

Sorry, but the rest of the proof will be omitted. The methotbisake a vertex of
degreeA (the minimal degree) and as in the proof of Vizing's theoreomsider the
componentd;j of vertices coloured eitheror j and the relationship its neighbours.
By considering switching,; in these components one can show that the neighbours
are pairwise joined.

O

Definition 7.7 (Chromatic polynomial) Let G be a graph. LetPs(x) be the number
of ways of colouring= usingx colours.

Definition 7.8 (Notation for contracting edges/e). LetG be a graph. Let € E(G).
ThenG/e is the graph obtained by identifying the endpointsofThat is ife joins
verticesx, y then for each edggz join z to x if z is not already joined ta:. Then
removey.

Theorem 7.9 (Induction step on the chromatic polynomiallete € E(G). Then
Pg(x) = Pa—e(x) — Pgje(a).

Proof. Lete = uv. The colourings: of G — e that are not colourings df are those
with c(u) = ¢(v), which are precisely the colourings 8% /.(z).
O

Corollary 7.10 (The chromatic polynomial is a polynomialPPs(x) is a polynomial
in . Furthermore,Pg(z) = 2™ — a;2" ' + agz™ 2 + -+ - + (=1)"a, withn = |G|,
a; = e(G@) and alla; > 0.

Proof. By induction one(G). True for the empty graph. In general le€ E(G).
Now Pg_.(z) = 2™ — by~ + b2 4 - -+ + (=1)"bp, Pgje(z) = "1 —
12" 2 4+ (=1)n — 1)e, 1, wheren = ||G||, by = e(G) — 1 and allb;, ¢; > 0.
Now by the theoremPg(z) = Po_c(x) — Pgje(x), SO Pg(x) = 2, — (b1 +
Dap_1+ (c1 +b2)z" 2+ + (=1)"(by + cn_1), @ polynomial of the same form.
O



Chapter 8

Edge colouring and Vizing’s
theorem

Definition 8.1 (Edge colouring) A k-edge colouring of a grapld: is a functionc :
E(G)— {1,2,--- ,k} such that incident edges receive different colours.

Definition 8.2 (Edge chromatic number, chromatic indexdiven a graph, the edge
chromatic number or chromatic index'(G) is the leastt for which G is k-edge-
colourable.

Certainly A(G) < X/'(G).

Theorem 8.3(Vizing). A(G) < X'(G) < A(G) +1

Proof. The lower bound is trivial. For the upper bound we do indutta the number
of edges.

Suppose we have a colouring of all but one edges E(G) using colourd1,2,--- ,A(G)+
1}. Then we wish to recolour so all the edges are coloured.

Note that one colour is unused (“missing”) at every vertex.

Let 2y, be the uncoloured edge. We construct a sequence of egdgesy, - - -
and a sequence of coloutg, ¢y, - - - as follows.

Pick ¢; to be a colour missing af;. Letxy; 1 be an edge with colour;. We stop
with k& = ¢ when eitherc;, is a colour unused at, or ¢, is already used omy; for
Jj<k.

If ¢, was a colour unused atthen we recoloury; with ¢; for 0 < ¢ < k. This
finishes the easy case where we can recolour the edges tguctumgive a a colouring
for G.

Otherwise we recoloury; with ¢; for 0 < ¢ < j and uncoloutry;. Notice thatc,,
(red) is missing at both; andy;,. Let blue be a colour unusedat

1. If red is missing at;, we colourzy; red.
2. If blue is missing ay; we colourzy; blue.

3. If blue is missing atj;, we colourxy; with ¢; for j < ¢ < k and colourzyy, blue.
(None of thery;, j < i < k are red or blue.)

If none of the above hold, then we consider the subgraph oaingldblue edges.
The components of this subgraph are paths or cycles. Theegtt y;, v, are the end
vertices of paths. Therefore they cannot all belong to theeseomponent.

21
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Select a component that contains exactly one of these esrtiéow swap over red
and blue in this component. Now one of the conditions abovst ipply.
O

Theorem 8.4 (Edge chromatic number of a bipartite graphf) G is bipartite, then
X'(G) = A(G).

Proof. We embedZ in a A(G)-regular bipartite multi-graph as follows: We replace
G by two copies ofG and forv’, v”, the copies ob € V(G), we joinv’ to v with
A(G)—dg(v) parallel edges. This creates a bipartite multi-grapiith vertex classes
(X'UJY") and(Y'U X”) if X andY were the original vertex classes@h

Now we prove the theorem fak-regular bipartite multi-graph& by induction on
1H | + AH).

Clearly true forA(H) = 1.

Let uv be an edge off, Delete the vertices andv. Becauseuw andv were in
different vertex classes, it is possible to add fewer thanew edges to make a new
A-regular bipartite multi-grapt’. Now we colourH’ by the induction hypothesis.
Certainly not all the colours were used to colour the new sdbet red be one of these
colours. Certainly the red edges i with wv form a 1-factor in G. Deleting this
1-factor gives g A — 1)-regular bipartite multigrapti/”’.

Now colour H” by the induction hypothesis, then add théactor back, to obtain
a colouring ofH.

O

Definition 8.5 (List colouring, L-choosable) Let L : V(G) — { finite subsets oN
}, so that each vertex has a “paint box” L(v). We say thatG is L-choosable if
de: V(G) — N such thaic(v) € L(v) Vv andc is a vertex colouring.

Definition 8.6 (k-choosable) We say that: is k-choosable if7 is L-choosable when-
ever||L(v)|| = k, Vv € V(G).

Clearly if G is k-choosable it is: + 1-choosable. However it is not necessarily true
that if G is k-choosable it ig:-colourable.

Definition 8.7 (List chromatic numbey;(G)). The list chromatic numbey; (G) of a
graph@ is the least such that is k-choosable.



Chapter 9

Colouring graphs on surfaces

9.1 Plane graphs

Definition 9.1 (Dual graphG*). Given a plane grapld- we can form a new grap&y
by drawing a vertex in the middle of each@fs faces, and joining vertices if their
corresponding faces are adjacent.

Lemma 9.2(Condition for duality of dual) G« x = G iff G connected and(G) > 2.

Proof. If G« is always connected, g6 * * is as well, sa& must be.

Always e(G*) < e(@) as each edge in the original graph may be crossed at most
once by an edge in the dual. XfG) is 1 thenG has a bridge, which certainly will not
be crossed by an edge in the duale§@'+) < e(G). If \(G) is 2 then there is an edge,
which if removed, would leave a bridge (. so agaire(Gx) < e(G). In both cases
e(G x %) < e(Gx) < e(G).

If A(G) > 3 then any pair of faces has at most a single common boundagysexg
G*x*x=0G.

O

Definition 9.3 (Plane map) A plane map is a plane graph together with its set of faces.

Definition 9.4 (Face colouring) A (face) colouring of a plane map is an assignment
of colours to the faces of the map with the condition that$asigaring an edge have
different colours.

Example 9.5. Let G be a plane graph with every vertex of even degree. Then every
face in the dual has an even number of sides.

Therefore every cycle in the dual is even, so the dual is kiteaso there is a face
colouring of G with just two colours.

Definition 9.6 (Four colour conjecture)The four colour conjecture (4CC) asserts that
every plane map can be 4-face coloured. Alternatively eplanye graph hag (G) < 4
by considering the dual.

The 4CC was made popular by Cayley in 1878. Almost at oncepfpt appeared:
Kempe 1879, Tait 1880.
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